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Numerical solution of an integral equation 
for flow from a circular orifice 

By BRUCE W. H U N T  
The Institute of Hydraulic Research, Iowa City, Iowa? 

(Received 28 June 1967) 

This study was begun as an attempt to either confirm or disprove conflicting 
results of previous research upon a classical problem in potential theory. An 
integral equation resulting from a surface distribution of vorticity is used to 
solve numerically for the flow through a circular orifice. Free-surface profiles 
and contraction coefficients are determined for four different ratios of orifice 
area to pipe area, and a comparison is made between the numerical and experi- 
mental results of both this study and previous studies. 

1. Introduction 
For over a century, potential-flow problems involving free streamlines have 

given theoretical hydraulicians some of their most rewarding work. Solutions to 
these problems have been shown to agree closely with experimental measure- 
ments in regions where accelerations and velocities of the flow are relatively high, 
thus permitting practical applications of the mathematical research in this area. 
However, some of these problems have proved to be so formidable that research 
workers have been forced to spend their time obtaining numerical approxima- 
tions rather than solving the problems in closed form. It is no small wonder then 
that the question of accuracy of these numerical solutions is occasionally raised. 
The free-surface efflux from an axially symmetric orifice is such a problem. 

The first published solution for the axially symmetric jet problem was given 
by Trefftz (1917). The orifice was assumed to be located in the wall of a reservoir 
which had boundaries extending to infinity. The problem was formulated in 
terms of a singular Fredholm integral equation of the second kind, and a tech- 
nique of trial and error was used to determine the location of the free streamline. 
Trefftz found the contraction coefficient to be about 0.61, a result which was 
nearly the same as that obtained by conformal mapping for a two-dimensional 
slot and which agreed well with an experimental value obtained by Bazin for a 
round orifice in the bottom of a comparatively large rectangular tank. 

A period of over 30 years passed before another solution to the problem 
was published by Southwell & Vaisey (1948). They used the relaxation method to 
calculate the flow field for an orifice located in a plate a t  the end of a finite dia- 
meter pipe. The ratio of orifice diameter to pipe diameter was l : 6, and their 
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computed value of 0.608 for the contraction coefficient agreed almost perfectly 
with the value of 0-61 obtained by Trefftz (1917) for a pipe of infinitely large 
diameter. 

Later, the relaxation method was applied by Rouse & Abul-Fetouh (1950) 
to obtain flow characteristics for four different ratios of orifice to pipe 
diameter. In  each case, including the one with an infinite pipe diameter, 
contraction coefficients were found which differed imperceptibly from those 
calculated by conformal mapping for the two-dimensional slot. Thus, for 
all practical purposes, the 40-year-old problem appeared to be completely 
solved. 

Garabedian (1956), however, questioned the accuracy of these previously 
calculated contraction coefficients. By considering the equation 

where +(r,  x ,  6) is a stream function, r is the radial co-ordinate, and z is distance 
along the axis of symmetry, Garabedian obtained a somewhat lower contraction 
coefficient for the limiting case when the pipe diameter becomes infinitely large. 
When 6 = 0, this equation describes irrotational flow in two dimensions; when 
6 = $, the equation describes axially symmetric irrotational flow. Garabedian 
was able to show that the ratio of r at infinitely large z to r a t  the point of separa- 
tion of the free streamline approached 0 and 1 as 6 approached - 1 and + 1, 
respectively. Since this ratio is calculated to be T/(T + 2) when 6 = 0,  Garabedian 
was able to fit a second-degree curve in powers of 6 through these three points. 
Interpolating on this curve then gave the value 0.765 for 6 = +, which corre- 
sponds to a contraction coefficient of 0.586 for the axially symmetric jet. Finally, 
by utilizing the logarithmic hodograph plane in two dimensions, Garabedian 
calculated the derivative of r with respect to  E when 6 = E = 0. Thus, by using a 
third-degree polynomial which passed through the three points found previously 
and which also had the correct slope a t  6 = 0, Garabedian interpolated for 6 = Q 
and arrived a t  the value of C, = 0.5793 

The intent of the present study was to calculate contraction coefficients by a 
more refined numerical method for four different ratios of orifice diameter to 
pipe diameter. Then it was hoped that a comparison between these calculated 
values, previously calculated values, and experimental values would provide a 
suitable basis for either confirming or disproving the results of these previous 
investigations. 

0.58 for the axially symmetric jet. 

2. Dimensional considerations 

atmosphere should depend upon the following nine variables : 
The radial co-ordinate of the free surface for a liquid jet discharging into the 

r = f(Z, yo, Ro, 5, P,  P, Y, g, k). (2.1) 

These variables are defined as: r,  radial co-ordinate to the free surface; z, dis- 
tance along the axis of symmetry; ro, radius of the orifice; Ro, radius of the pipe 
leading to the orifice; 5, jet discharge divided by the orifice area; p, mass density 
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of the liquid; p, dynamic viscosity of the liquid; y ,  specific weight of the liquid; 
u, surface tension of the liquid; k, scale of surface roughness in the pipe. 

Use of the r-theorem to combine these variables into dimensionless groupings 
yields 

Attention in this study is confined to pipes with smooth surfaces. Thus the last 
term on the right-hand side of (2.2) will be disregarded, and if the symbols R, P 
and W are used to represent the Reynolds, Froude and Weber numbers, respec- 
tively, then (2.2) becomes 

The contraction coefficient C, is defined as the ratio of the cross-sectional area of 
the jet at  large z divided by the area of the orifice. This means that C, is a function 
of four dimensionless variables, as shown by the following relationship: 

c,= F ( ~ , R , F ,  Ro w ) .  (2.4) 

Equation (2.4) indicates that the experimental contraction coefficient is a func- 
tion of the boundary geometry and the relative magnitudes of viscous, gravita- 
tional and capillary forces. 

The mathematical analysis neglects viscous, gravitational and capillary effects. 
Hence, for the mathematical results, (2.4) reduces to 

c, = F&"O/RO)* (2.5) 

Equations (2.4) and (2.5) indicate that, in general, the mathematical and ex- 
perimental contraction coefficients will not coincide. Instead, the mathematical 
contraction coefficients must be regarded as limiting values of the experimental 
coefficients, the latter approaching the former when viscous, gravitational, and 
capillary effects become negligible. There are many published results of experi- 
mental investigations concerned with axially symmetric jets, and the findings 
of four different investigators in the period from 1886 to 1940 (King & Brater 
1963; Medaugh & Johnson 1940; Russell 1925) are shown in figure 1 for the case 
of an orifice in the wall of a large reservoir. These experimental results were not 
obtained by systematically varying the independent dimensionless variables in 
(3.4). Thus, it was necessary to plot C, as a function of the absolute orifice radius 
ro and the ratio ro/H,  where H is the head of water upon the orifice. It is seen from 
this plot that C, decreases as ro/H approaches zero, the decrease in ro/H represent- 
ing both a decrease in the effects of gravity and an approach to the same boundary 
geometry that is assumed in the mathematical model. Also, it is important to 
note that each one of these investigators has measured values of C, that are less 
than the value of 0.61 calculated by Trefftz (1917), Southwell & Vaisey (1948) 
and Abul-Fetouh (1949) for the irrotational-flow model. 

The qualitative result of eliminating capillary, gravitational and viscous 
effects in the experimental jet can be predicted by physical reasoning. Surface 
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tension presumably affects the jet in two ways: by causing fluid to cling to the 
orifice lip and by what Rouse (1961) terms an ‘elastic stocking’ effect. The 
clinging or creeping effect probably plays a relatively minor part in determining 
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FIGURE 1. Experimental contraction coefficients for an orifice in the wall of a reservoir 
extending to infinity. 0, Smith; a, Bilton; @ , Bovey ; 0 ,  Medaugh & Johnson (1940). 

C,, although elimination of this effect could only cause C, to decrease. Elimination 
of the ‘elastic stocking’ effect would cause pressures within the jet to decrease, 
and the resulting increase in velocity would cause a decrease in the contraction 
coefficient. Gravity distorts the free-streamline geometry in various ways, de- 
pending upon the orientation of the jet with respect to the surface of the earth. 
For example, a jet directed vertically downward has a smaller contraction co- 
efficient than the same jet would have if directed vertically upward. On the 
other hand, the free surface of a horizontal jet is distorted by gravity so that its 
geometric and dynamic characteristics are no longer axially symmetric, and the 
net result upon C, in this case is unknown. Viscosity can be expected to affect the 
jet by altering flow conditions within the boundary layer. As the Reynoldsnum- 
ber becomes larger, fluid within the boundary layer is entrained at  a faster rate 
by accelerating flow near the orifice. The end result is that the slope of the ‘dis- 
placed ’ boundary (calculated from the boundary-layer displacement thickness) 
approaches the dope of the actual boundary as viscous effects decrease. Hence, 
the ‘displaced’ boundary becomes more nearly perpendicular to the axis of the 
jet, and the jet is forced to contract more. The final conclusions of this paragraph 
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may be summarized by saying that elimination of capillary and viscous effects 
in the experimental jet can only cause a decrease in C,, while the result of elimin- 
ating gravitational effects depends upon the orientation of the jet with respect to 
the earth’s surface. 

The conclusions of the preceding paragraph now make it possible to interpret 
the experimental data shown in figure 1. The influence of gravity upon these 
contraction coefficients should be very small as r,/H approaches zero. Therefore, 
since values of C, between 0.61 and 0-59 have been measured by four different 
investigators for small values of ro/H, and since corrections for capillarity and 
viscosity could only decrease G,, it appears that the accuracy of 0.61 for the 
theoretical contraction coefficient is open to question. 

3. Mathematical equations 
Line distributions of vorticity have been used by Kochin, Kibel & Rose 

(1964,  Lamb (1932) and Robertson (1965) to generate irrotational velocity fields. 
However, less use has been made of the fact that surface distributions of vorticity 
can also generate irrotational velocity fields. These surface distributions lead 
directly to Fredholm integral equations of the second kind, a fact which forms the 
basis for the numerical work in this study. Landweber (1951) points out that 
Vandry (1951) of the Admiralty Research Laboratory in Teddington, England, 
was one of the first investigators to do pioneer research in this area. 

The Biot-Savart law for a line distribution of vorticity is 

The vector 1 is tangent to the line of integration, and the strength I? of this vortex 
distribution is constant over the path described by dl. However, if I? is allowed 
to vary in a direction normal to dl so that r = yds, equation (3.1) may be rede- 
fined as the surface integral 

It is important to realize that in general 

= v(xl, x2, x3)7 7 = y( t l ,  t 2 ,  t 3 ) ,  

= t 2 , $ ) ,  d1 = dl(tl, t2 ,  t 3 ) ,  

R = (xl - t l )  el + (x, - t,) 2, + (x3 - t3 )  6, 
and 

The symbols g1, 6, and t3 denote unit base vectors in the xltl, x2t2 and x3t3 
directions, respectively. The two sets of independent co-ordinates (xl, x,, x3) and 
( t l ,  t,, t3) are often considered to be co-ordinates of the two points p(xl, x2, x3) 
and p(tl, t,, t 3 )  in space. Hence, the subscripts p and q will be used to show that a 
variable is a function of the ‘fixed’ point co-ordinates (xl, x2, x3) and the ‘vari- 
able’ point co-ordinates ( t l ,  t,, t3 ) ,  respectively. This notation allows (3.2) to 
be written in the following form: 

R = IR1 = R(x1, x2, x3, tl, t 2 ,  t 3 ) .  
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If the region of interest V is interior to its boundary surface S,  then, when point 
p lies upon S ,  it is possible to deduce the following equation from (3.3): 

The unit vector p p  is in the direction of flow and tangent to S at point p .  The 
function y, is found to be 

where VP- and V,, are scalar magnitudes of the vector velocity V on the interior 
and exterior sides, respectively, of S. For the interior problem under considera- 
tion, the velocity V,, vanishes. If the velocity &- is denoted by U ,  substitution 
of (3.5) into (3.4) then gives an integral equation for the interior problem: 

rp = V,- - &+, (3.5) 

The theory of Fredholm states that (3.6) has no solution unless the characteristic 
value of this equation is unity, in which case there are a finite number of inde- 
pendent, nontrivial solutions for U .  Since a unique solution to this problem is 
known to exist physically, it  can be concluded that unity is an eigenvalue of 
(3.6) of multiplicity one, and one and only one solution U exists. It will be shown 
in the next section, however, the (3.6) can be approximated by an inhomogeneous 
integral equation of the second kind simply by specifying U on a portion of S. 
In  that case, a unique solution exists if unity is not an eigenvalue of the approxi- 
mate inhomogeneous equation. 

A simple argument can be used now to show that the velocity Ufz,, x2, XJ 
must be zero in the entire region exterior to S. This conclusion is based upon the 
fact that the velocity V,+ on the exterior side of S vanishes. Since irrotational 
motion is impossible in a region where the total velocity vanishes on the boundary 
S,  then the velocity must vanish everywhere within the region. 

4. Formulation of the problem 
There is a boundary condition which must be imposed at  the free surface in 

order to fix a location of the free streamline. This is the condition of constant 
velocity upon the free surface, obtained from the Bernoulli equation by consider- 
ing the head upon the orifice to be so large that the gravity term may beneglected. 
A method of trial and error was used in this study to find a free streamline which 
conformed to this boundary condition. A geometry for the free streamline was 
assumed initially, and then velocities at  various points along the free surface were 
calculated and checked for the constant-velocity condition. Finally, the position 
and shape of the free streamline were corrected accordingly, and the process was 
repeated. 

If an exact mathematical solution to this problem were available, it would show 
that the free streamline only reaches its asymptotic radius ra at a cross-section 
infinitely far downstream from the orifice. The solution would also show that 
flow within the pipe is fully uniform only at a cross-section infinitely far upstream 
from the orifice. For the approximate numerical solution of this problem, how- 
ever, it  was assumed that the asymptotic radius of the free streamline was reached 
in a distance of about 1.6 orifice diameters downstream from the orifice, and that 
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uniform flow was present in the pipe about 1.5 pipe diameters upstream from the 
orifice. Inspection of the results of Abul-Fetouh's investigation shows clearly 
that these are very reasonable assumptions. Once these two approximations are 

x2, t2 

FIGURE 2. Flow through tan orifice located in a plate at the end of a pipe. 

introduced, (3.6) can be put in the form of an inhomogeneous integral equation 
of the second kind, 

The symbols S-,,, So, and flu+, denote portions of the surface S for 

- - o ~ < x , < O , O < x , < a  and a < x 3 <  +a, 
respectively, U,, is the asymptotic free-surface velocity, the point x3 = a is 
where the asymptotic radius ra was assumed to be reached, and R,, as defined 
previously, is the pipe radius. The point x3 = 0 is located on the axis of sym- 
metry where uniform flow was assumed to start in the pipe. 

5. Numerical treatment of the integral equation 
The cylindrical symmetry present in the orifice problem made it most con- 

venient to switch from Cartesian to cylindrical co-ordinates. Therefore, after 
restricting point pfz,, x2, x3) to the (x,, x,)-plane, the following change of co- 

t ,  = pcos8, t ,  = psin8, t3 = 5. 
The x1,x2,x3 and t , , t2 , t3  co-ordinate axes were made to coincide as shown in 
figure 2, and the angular displacement 8 was measured from the (x,,t,)-axis 

ordinates was made: x1 = r ,  x, = 0, x3 = 2, 
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toward the (xz ,  t,)-axis in the sense of a right-handed co-ordinate system. Thus, 
dl, = p d 8 8  and = (dp)2+ (d5)2, where 8 is a unit base vector in the 8 
direction for the p, 8, g system. Once these substitutions were made in (4.1) and 
(4.2), it  was possible to multiply through by 471 and integrate with respect to 8 to 
obtain 

where the kernel function K(r,  x ,  p, 1;) is 

The symbols P(k, in) and E(k ,  $71) represent complete elliptic integrals of the 
first and second kind, respectively, the angle B, is defined as 

B, = tan-l(dr/dx) 

evaluated a t  the point p(r ,  0, z ) ,  and the elliptic modulus k is defined by 

Details of this integration are given by Hunt (1967). Careful examination of (5.2) 
discloses the fact that K(r,  x ,  p, g )  + + co as the points p and q approach each 
other along the arc s (s is the line formed by the intersection of the half plane 
8 = 0 and the surface X). It is shown also by Hunt (1967) that 

cos Bp cos B 
lim K(r,  x ,  p ,  5) = ~ 

r P+P 

where spn = s, - sp is arc length measured from point p to point q. Thus, even 
though K(r,  z,  p ,  5)  -+ + co as q+p along s, the integral 

in (5.1) quite definitely exists. 

from 6 = Q to C = 
Numerical solution of (5.1) was accomplished by dividing the arc length s 

into N segments and rewriting (5.1) in the approximate 

form N 

where is a mean value of U, that is assumed to occur halfway between si-l 
and si. This approximation, according to Kantorovich & Krylov (1958), is 
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known as the method of Krylov Q Bogoliubov. The length of the segments from 
si-l to si varied from relatively large values in regions of nearly uniform flow to 
about r0/32 in regions of rapid acceleration close to the orifice and the point of 
stagnation. The number N was taken to be about 60. After each segment from 
si-l to s, was split in half, evaluation of the N integrals was accomplished using 
Simpson’s rule. A system of N equations for the N unknowns U, was obtained by 
choosing point p to be at the midpoint of each of the N arc-length segments. 
Solution of these equations was accomplished with an IBM-7044 computer at  
the University of Iowa, and solution time for a given geometry of the free stream- 
line was approximately three minutes. 

When integrating over the segment of arc which contained point p ,  the follow- 
ing method, suggested by Landweber, was used to ‘remove’ the singularity. 
The integral from sp-l to sp was replaced by 

The first integral on the right-hand side of (5.6) can be evaluated by Simpson’s 
rule, since (5.4) clearly shows that the singularity has been ‘subtracted out’. 
The second integral can be integrated exactly. 

Evaluation of both integrals on the right-hand side of (5.5) was fairly straight- 
forward, since no singularity appears in their integrand. The substitu- 
tion t- (s+so) = tan$ changes the lower and upper limits of integration to 
$ = $o > 0 and $ = + Qn, respectively, and the resulting integrals were evalu- 
ated using Simpson’s rule with 40 equally spaced increments of $. 

One of the most critical steps in the numerical solution was determining slopes 
and curvatures along the free streamline at  the midpoint of each of the intervals 
from si-l to s,. Since each interval was small enough to  allow the enclosed arc 
length to be approximated by the length of a straight line joining the end-points, 
it  was decided to use the slope of each of these straight-line segments for the slope 
at  the midpoint of each arc. Once slopes were found at  numerous points along the 
free streamline, it was possible to represent the slope in a piecewise manner as a 
function of z by 

tan B = fl(z), (5.7) 

where fl(z) is a second-degree polynomial passing through three successive points. 
Differentiating (5.7) with respect to s then allowed the curvature to be calculated 
at  the midpoint by the formula 

Obviously, (5.8) cannot be usedin aregion close to the orifice, since the slope (and 
apparently the curvature too) becomes infinite at the point of separation. In  
this region, since cot B = 0 at  the point of separation, it was found more conveni- 
ent to replace (5.7) by 

(5.9) 
24 Fluid Mech. 31 
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and calculate curvatures near the point of separation by the formula 

(5.10) 

which may be obtained from (5.9) simply by differentiating with respect to s. 
Details of the method used for locating the free streamline consisted of initially 
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FIGURE 3. Percentage variation from the constant-velocity condition for the two theoretical 
profiles shown in figure 5 .  @, Abul-Fetouh (1949); 0, Hunt (1967). 

choosing an asymptotic radius ra. Next, the shape of the free streamline between 
the orifice and the region of uniform flow was adjusted by trial and error until 
velocities along the portion of the free surface farthest from the orifice were 
essentially constant. Finally, if free-surface velocities in the vicinity of the orifice 
were higher than the chosen asymptotic velocity, the asymptotic radius was 
decreased. Conversely, if velocities in this region were too low, the asymptotic 
radius was increased. The entire process had to be repeated a number of times 
until a satisfactory free-streamline geometry was found. This usually meant 
calculating velocities along the free surface for ten to twenty different geometries 
in order to obtain one solution. 

Calculations were stopped when a geometry for the free steamline was found 
which satisfied the constant-velocity condition within & 1.5 yo of the asymptotic 
velocity. Velocities along the free surface were extremely sensitive to very small 
changes in form and position of the free streamline. This was particularly true 
close to the orifice. An indication of this sensitivity is given in figure 3, where per 
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cent deviaton from the constant-velocity condition is shown for the two theoret- 
ical profiles plotted in figure 5. The radii for these two profiles do not differ 
from each other by more than 3% at any point. However, deviations from the 
asymptotic velocity range from about 3 % to 10SyO for the one profile, while the 
other profile satisfies the 

6. Experimental measurements 
There is a wealth of published experimental data concerning contraction 

coefficients and discharge coefficients for axially symmetric jets, but relatively 
little experimental work has been concerned with measuring entire surface 
profiles. For that reason, it was decided to measure experimentally under very 
special conditions the free-surface profile for one of the four boundary geometries 
considered in this study. 

Since the purpose of this experimental work was to detect extremely small 
differences between the experimental and calculated surface profiles (differences 
of r/ro+ 0.025), it was necessary to use great precision in taking measurements. 
Furthermore, in order to make the comparison as meaningful as possible, the 
effects of gravity, viscosity, and surface tension, had to be minimized. As shown 
previously, this meant making the Froude, Reynolds and Weber numbers as 
large as possible. It also meant that flow separation along the boundary was 
undesirable, and thus it was decided to use a large orifice located in the wall of a 
relatively large tank. 

Experimental measurements were made using a jet which discharged vertically 
downward through a 2in. radius orifice in the bottom of a large rectangular 
steel tank. This tank, which ordinarily served as a constant-head tank for other 
experimental work at  the Iowa Institute of Hydraulic Research, is 14ft. wide, 
24ft. long, and 6ft. 5in. deep. The distance from the centre of the orifice to the 
only obstruction on the otherwise smooth floor of the tank was about 3 ft. This 
obstruction was a 3 in. angle iron, and its influence upon the flow was considered 
negligible, since velocities in this region were calculated to be about 0.1 yo of the 
free-streamline velocity at  the orifice. The orifice itself was cut in a piece of 
stainless steel so that the edge of the orifice could be ground to a thickness of 
about 0.004 in., and this 54-inch diameter stainIess-steel insert was set into the 
bottom of the tank so that its wetted surface was flush with the interior tank 
surface. 

Radial measurements of the free surface were made by using two sharp brass 
prongs which converged upon opposite sides of the jet at  the same time. Distance 
between the two prong points was read from an attached micrometer scale to  
one thousandth of an inch, and this reading was divided in half to obtain the jet 
radius. A point gauge was rigidly fastened to the bottom of the tank so that its 
longitudinal axis was vertical and parallel to the longitudinal axis of the jet. 
The caliper was mounted upon the end of a second point gauge, which crossed the 
vertical point-gauge at right angles. These two point-gauges were joined together 
in a way that allowed the caliper to be moved in both the horizontal and vertical 
directions. The distance of the caliper prong points from the orifice plate was 
measured with the vertical point-gauge to one thousandth of a, foot. 

1.5 %-error criterion used for this study. 

24-2 
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Since measurements were made on a vertical jet, it was a simple matter to 
apply an approximate gravitational correction to the measured profile. If the 
free surface below the orifice were unaffected by gravity, the constant velocity 
along the free streamline for a head H on the orifice would be 

v = (2gH)k  

The actual experimental velocity at a point on the free streamline is approxi- 
mately 

Y = [2g(H+z)]), 

where x is distance below the orifice. Requiring flow rates to be the same for these 
two cases then gives for the corrected radius r, 

The experimental procedure consisted of filling the tank to its top, removing a 
cap over the orifice, and taking measurements for 15 min, in the course of which 
the water level in the tank dropped approximately 2 ft. Then the tank was filled 
again and the procedure was repeated several times to obtain the remaining 
measurements. This method was adopted in preference to the alternative method 
of keeping a constant head upon the orifice, because it was found that flow from 
the pumps disturbed the free surface of the jet. When the pumps were not 
running, the upper portion of the free surface appeared glass-smooth and 
perfectly steady. However, this smoothness and steadiness gradually lessened 
with increasing distance from the orifice, and it was considered impossible to 
make accurate measurements for z/r, > 1.5. 

7. Discussion of the results 
The contraction coefficients calculated in this study by (5.5) were 

0-5776 + 0.578, 0.5938 = 0.594, 0.6241 = 0.624 and 0.6908 = 0.691 

for orifice-to-pipe area ratios of 0.00, 0.25, 0-50 and 0.75, respectively. These 
results are plotted in figure 4 along with the values calculated by Abul-Fetouh 
(1949) and some experimental values determined by Weisbach (1855). The value 
0.578 for the limiting case of an infinite pipe diameter agrees closely with Gara- 
bedian's (1956) value of 0.579, and contraction coefficients for the otherthree cases 
are also lower than corresponding values calculated by Abul-Fetouh. Close exam- 
ination of figure 4 discloses the interesting paradox that experimental magnitudes 
of the contraction coefficients seem to agree more 'closely with Abul-Fetouh's 
theoretical curve, while the shape of the experimental curve appears to agree 
more nearly with the shape of the theoretical curve determined in this study. 

The mathematically computed free surface for the orifice-to-pipe area ratio 
of 0.00 is shown in figure 5. Points determined experimentally are also plotted 
in figure 5 for comparison with the corresponding theoretical profiles calculated 
in both this work and in the work by Abul-Fetouh. All of these experimental 
points have been approximately corrected for gravitational effects with (6.1). 
The closeness of the corrected experimental points determined in runs 1 and 2 is 
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evidence of the sensitivity of the experimental measurements. Of utmost im- 
portance is the fact that this experimental profile, after being corrected for 
gravitational effects, has an asymptotic radius which is less than Abul-Petouh’s 
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FIGURE 4. Contraction coefficients for different ratios of orifice area to  pipe area. (>, Abul- 
Fetouh (1949), theoretical; @, Weisbach (1855), experimental; @, Hunt (1967), theoreti- 
cal. 

theoretical asymptotic radius but greater than the theoretical asymptotic 
radius found in this study. It was shown in a previous section that a reduction 
in viscous and capillary effects could only cause the asymptotic radius to decrease. 
Since the mathematical analysis neglects the effects of viscosity and capillarity, 
then the only logical conclusion is that the potential-flow profile must have a 
smaller asymptotic radius than the corrected experimental profile shown in 
figure 5 .  Therefore, there is certainly reason to believe that, when a/A = 0, 
the value of 0-58 is very close to the exact mathemetical contraction coefficient. 

Since much of this study is concerned with the mathematical aspects of the 
problem, it seems fitting to close the discussion with a review of some of the 
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weaknesses of various methods that have been used to obtain numerical solutions. 
All of these methods have certain failings. 

Trefftz’s original attack on the problem in 1916, using integral equations, was a 
significant step forward in a relatively unexplored direction. However, there are 
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FIGURE 5. Free-surface pro6les for an orifice in the wall of a reservoir 
extending to irrEinity. 

at least two serious criticisms which can be made about his method. First, instead 
of comparing velocities along the free streamline, Trefftz compared values of the 
flow potential as a check on the constant-velocity condition. Even if the assumed 
and calculated values of the flow potential coincide at  a finite number of points 
along the free surface, it  does not follow that derivatives of the potential must 
coincide at  these points, too. Secondly, Trefftz used only six points along the 
free streamline, and these are hardly enough points to include the all-important 
effects of highly curvilinear flow near the orifice. 
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The relaxation or finite-difference approach used by Southwell & Vaisey 
(1948) and by Abul-Fetouh (1949) is undoubtedly just as accurate as the method 
of integral equations-provided that the intervals between the mesh points are 
chosen sufficiently small. Gilbarg (1960) feels that one possible source of in- 
accuracy in finite-difference methods is truncation error in a region near the 
point of separation. He cites one example given in a governmental report in 
which velocities computed by relaxation along a free streamline for a plane- 
flow problem were all within * 0.7 % of each other, yet an exact solution to this 
problem showed that exact and calculated values of the free-surface ordinate 
differed by as much as 10%. One other criticism not mentioned by Gilbarg is 
the difficulty of evaluating at  the free surface partial derivatives of the stream 
function in the vertical and horizontal directions. These derivatives must be 
used to check the constant-velocity condition. Abul-Fetouh determined deriva- 
tives by differentiating a second-degree polynomial which passed through three 
points. Then he evaluated derivates at the end-point-a procedure which can 
be extremely risky. Southwell & Vaiseys method was no better in this respect. 

Garabedian’s method depends upon interpolating a numerical value from a 
third-degree polynomial which satisfies four given conditions. As mentioned 
previously, passing an Nth-degree polynomial through N + 1 points on another 
curve does not mean in general that the two curves will coincide. This is simply 
because slopes and higher derivatives may be different at these N +  1 points. 
However, to Garabedian’s credit, his third-degree polynomial was determined so 
that it passed through a point with the correct slope close to where his final value 
was interpolated. A more detailed criticism concerning possible errors of this 
type in Garabedian’s solution is given in a discussion by Landweber (1962). 

Two weaknesses of the integral-equation approach used in this study are the 
approximation made in (5.5) and the need for accurate values of free-streamline 
curvature near the point of separation. An estimate of the error involved by 
solving (5.5) as an approximation to (5.1) is given by Kantorovich & Krylov 
(19x9, but it is impossible to use formulas given in this reference because of the 
singularity present in the kernel function Kfr, x ,  p, c). In  defence of this approxi- 
mation, however, it should be noted that the spacings s + ~  to si along the boundary 
were chosen in a way calculated to minimize errors in the approximation. Also, 
when point q is on the actual free streamline, U, is a constant and (5.5) is truly 
exact. Probably more important for the question of accuracy are values of 
curvature found near the point of separation. Numerical calculations made with 
(5.10) gave curvatures which were relatively high near the orifice, and if the 
two-dimensional flow is any indication of the behaviour of axially symmetric 
flow in this region, then the curvature becomes infinite at the point of separation. 
Use of smaller curvatures in this region was found to increase the asymptotic 
radius of the jet without seriously affecting the shape of the free streamline. 

8. Conclusions 
The results of this study allow the following general conclusions to be made. 
Free-streamline problems in fluid mechanics may be solved more efficiently 

with integral equations derived from surface-vortex distributions than with 
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either relaxation techniques or integral equations derived from source-and-sink 
distributions. This is because unknown velocities on the boundary are obtained 
directly without having to differentiate a potential function or solve for unknowns 
within the flow field itself. 

Boundary velocities calculated from these integral equations are extremely 
sensitive to small changes in position, slope and curvature of the boundary. This 
means that ordinates, slopes and curvatures of the boundaries must be known 
very accurately in order to achieve a corresponding high degree of accuracy in 
numerical solutions. 

Numerically calculated and experimentally obtained free-surface profiles 
for the axially symmetric jet appear to check closely when the Froude, Reynolds 
and Weber numbers are all relatively large. It is only when contraction co- 
efficients computed from the squares of corresponding radii are compared that 
differences become appreciable. 

Numerical and experimental results presented in this study indicate that 
mathematically determined contraction coefficients for axially symmetric jets 
are slightly less in magnitude than contraction coefficients calculated mathe- 
matically for the corresponding two-dimensional jets. 

The writer would like to thank Dean Hunter Rouse and Dr Louis Landweber 
for advising him on the physical and theoretical aspects of the problem, res- 
pectively. The study was initially suggested by Dean Rouse. 
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